Latent Regression Analysis.

نویسندگان

  • Thaddeus Tarpey
  • Eva Petkova
چکیده

Finite mixture models have come to play a very prominent role in modelling data. The finite mixture model is predicated on the assumption that distinct latent groups exist in the population. The finite mixture model therefore is based on a categorical latent variable that distinguishes the different groups. Often in practice distinct sub-populations do not actually exist. For example, disease severity (e.g. depression) may vary continuously and therefore, a distinction of diseased and not-diseased may not be based on the existence of distinct sub-populations. Thus, what is needed is a generalization of the finite mixture's discrete latent predictor to a continuous latent predictor. We cast the finite mixture model as a regression model with a latent Bernoulli predictor. A latent regression model is proposed by replacing the discrete Bernoulli predictor by a continuous latent predictor with a beta distribution. Motivation for the latent regression model arises from applications where distinct latent classes do not exist, but instead individuals vary according to a continuous latent variable. The shapes of the beta density are very flexible and can approximate the discrete Bernoulli distribution. Examples and a simulation are provided to illustrate the latent regression model. In particular, the latent regression model is used to model placebo effect among drug treated subjects in a depression study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

به‌کارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر هم‌خطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان

Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...

متن کامل

Estimation of gene effects and combining ability of latent period of stripe rust in advanced lines of wheat

Four advanced breeding lines of wheat which had appeared to be resistant to stripe rust in the past years along with a susceptible variety, Bolani, were intercrossed in all combinations of a half-diallel design. Seedlings were grown in greenhouse until the first leaves fully expanded and then inoculated with two pathotypes (races) 6E134A+ and 134E148A+, separately. Days to the first pustule eru...

متن کامل

The role of latent anxiety, manifest anxiety and mindfulness skills in academic procrastination among adolescent girls

Psychological interventions are necessary for countering academic underachievement in students. This study focused on the two constructs of anxiety and mindfulness that may have a destructive and protective role in learning objectives, respectively. The purpose of this research was to determine the role of latent anxiety, manifest anxiety, and mindfulness skills in explaining academic procrasti...

متن کامل

مدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری

Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis.  One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...

متن کامل

Partial least squares regression and projection on latent structure regression (PLS Regression)

Partial least squares (pls) regression (a.k.a projection on latent structures) is a recent technique that combines features from and generalizes principal component analysis (pca) and multiple linear regression. Its goal is to predict a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical modelling

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2010